
Native Chip
Operating System

Contents

 Background

 Native COS Internal Architecture

 Memory & File Management

 Security Management

 Command Dispatcher

 Command Set

 Card Life Cycle

2

Background

 Native COS is how COS has been developed since the
1980’s.

 It is still being used today due to its cost-effectiveness
and performance (e.g. GSM SIM, EMV, etc.).

 All CPU contact cards conform to ISO 7816-1,2,3, while
all CPU contactless cards conform to ISO 14443-
1,2,3,4.

 A smart card terminal communicates with smart cards
via APDU commands, and does not know or care
whether the card is a native COS, a Java card or a
MultOS, etc.

3

Native COS Architecture

Memory Management

COS In ROM / Flash

File Management

Security Management

APDU Command Set

Command Dispatcher

ISO 7816-3 Driver

Application Data in EEPROM / Flash

4

Memory & File
Management

5

Native COS Memory

 The size of a native COS refers to the size of the
EEPROM (or flash).

 The EEPROM contains purely application data,
system data, secret keys and secret code; it does not
contain any executable programming code.

 The size excludes the COS, usually in ROM and
sometimes in flash.

 The EEPROM is a contiguous block of memory that
becomes files using memory and file management

6

Card File Architecture

 The card is organized into files.
 MF (Master File) is the root of the file structure. It can be seen as a

main directory.
 DF (Dedicated File) is a file which contains other files. It can be seen

as a directory, where each DF will behave like an independent card.
 EF (Elementary File) is a file containing data. It has various file types

namely, transparent, fixed record, variable records, cyclic and
internal file (e.g. key files, purse files).

In the 7816-4, a DF may even contain another DF.

MFMF

DFDF DFDF DFDF EFEF EFEF

EFEF EFEF EFEF EFEF EFEF

7

Files (MF, DF, EF)

 A file has 2 bytes of file ID.

 A file has a header and a body.

 The header describes the file (eg. ID, file type, size,
access control, status, etc.).

 ISO 7816-4 specifies that the Identifier of the MF is to be
3F 00.

8

Example of File Identifiers

MFMF

3F 003F 00

DFDF

01 0001 00

DFDF

02 0002 00
DFDF

03 0003 00
EFEF

3F 013F 01
EFEF

3F 023F 02

EFEF

01 0101 01

EFEF

01 0201 02

EFEF

01 0301 03

EFEF

02 0102 01

EFEF

02 0202 02

9

Elementary File Structures

 ISO 7816-4 defines four different types of files.
 The file types can have other COS internal files

such as secret code, keys, counters and purse
files.

Linear fixed Linear variable Cyclic Transparent

10

File Access Control

 EF access can be:
 Plain read, write, update
 MAC-ed read, write update
 Ciphered read, write update
 Initially accessible for personalization, but after which, is locked

 An access condition is assigned to each possible access

 It is COS-checked to ensure that the access condition has been
achieved before the access is granted.

 Access is made via APDU commands (e.g. Read / Write / Update
Binary, Read / Write / Update Record)

11

Security Management

12

Secret Codes/Keys

 Keys are used to protect file access in read / write / update.

 Keys can also protect sensitive actions:
 Creation / management of files relating to the card security
 One key for one purpose

 Keys are kept in internal EF’s for usage by the COS.

 Each key, besides its key content, has a key descriptor to describe its
behavior. (e.g. pre-usage conditions, post-usage conditions, access
conditions, and capabilities like encrypt, decrypt, verify, credit and debit.)

 Successful key operation changes the COS state, thus enabling APDU
commands to perform what was previously not allowed.

13

Authorization Register & Authorization Mask

 AR is a variable that is initialized to zero upon reset.

 With a Select DF command, it can be masked with an
Authorization Mask (AM) to implement global and local
authorization.

 AM is one of the DF descriptor parameters.

14

Secret Codes

 A Secret Code is like a password, presented in plain or
ciphered.

 Ciphered presentation is done using a session key.

 A session key is established using non-replayable data
such as random numbers or counters, with one coming
from the card and the other from the external
environment, and a common reference key.

 The key is unique for each and every card, achieved
through a key diversification algorithm of a card
unique data and a master key.

15

Keys

 Keys are used by triple DES or AES cryptographic functions.
 3DES keys may be 128 bits or 192 bits.
 AES keys may be 128 bits, 192 bits or 256 bits.
 Keys are to be kept in the internal EF.
 Example of keys in a smart card:

 Internal Authentication Key
 External Authentication Key
 Mutual Authentication Key
 Signature Key
 Credit Key
 Debit Key
 And more…

16

Secure Messaging

 Ensures that what is sent to the card is from the
authorized source and has not been tampered

 Ensures that the response from the card is indeed
coming from the card and has not been tampered

 Achieved using a CMAC and encryption if
confidentiality is required

 Secure messaging is shown by a CLA (class) byte set
at 04 or 84, and can be used for ISO and Proprietary
commands

17

Example:
Command that sends data to the card

CRYCKS = The Cryptographic Checksum of the command APDU obtained by

a 3DES computation

04/84 INS P1 P2 Lc+3 Data+CRYCKS2-0 Le=3

The application calculates the CRYCKS and
sends the 3 least significant bytes to the
card with the command APDU.

The card calculates the CRYCKS, checks
its integrity and returns the 3 most
significant bytes.

CRYCKS7-5 90 00

18

Example:
Command that retrieves data from the card

CRYCKS = The Cryptographic Checksum of the command + response APDU

obtained by using DES

04/84 INS P1 P2 Empty Empty Le+3

The card calculates the CRYCKS and sends
the 3 most significant bytes to the host
with the response APDU.

Data CRYCKS7-5 90 00

19

Command Dispatcher

Command Dispatching:
public void process(APDU apdu) {

switch(apduBuffer[ISO7816.OFFSET_INS])
{ case INS_BIN_READ:

case INS_BIN_UPDATE:
ProcessFileCommand(apdu);
break;

case INS_SET_STATUS:
ProcessSetStatus(apdu);
break;

case INS_VERIFY_PIN:
VerifyPIN(apdu);
break;

case INS_PUT_KEYS:
PutKeys(apdu);
break;

………….
default:

ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);
}

} 20

APDU Command Set

 The APDU Command Set can be classified into:

 Proprietary administrative commands

 ISO-7816 part 4 commands

 Applications-related commands:

 Secure portable file

 E-purse

 PKI

21

Administrative Command Set

 Manufacturer Initialization
 Creation of files
 MF
 DF
 EF

 Deletion of files (usually last created is first deleted)
 Freezing / locking of access conditions
 Passing of control from main to sub-issuer
 Changing of unsecured access to secured access
 Locking of access

 Changing the status of the card life cycle

22

Important Secure Portable File:
ISO 7816 Part 4 Commands

 Verify

 Disable Verification

 Unblock

 Get Challenge

 Internal Authentication

 External Authentication

 Establish Session Key

 Select File

 Read Binary / Record

 Write Binary / Record

 Update Binary / Record

 Erase Binary / Record

 Get Response

23

E-Purse Command

 Read Balance with balance MAC

 Debit returning debit certificate counter-signing
terminal certificate, logging transaction in an
atomic process

 Debit signature

 Incremental debit

 Credit with credit certificate, logging transaction
in an atomic process

 Credit signature

24

PKI Command

 Generate Asymmetric Key Pair

 Asymmetric Public Encrypt

 Asymmetric Private Encrypt

 Asymmetric Public Decrypt

 Asymmetric Private Decrypt

 Symmetric Encrypt

 Symmetric Decrypt

25

Card Related Application Design
Using Native COS

 Know your application requirements (e.g. portable file, purse
requirement, PKI requirement).

 Choose the right COS that meets your requirements.
 Fully understand the COS.
 Design the card mapping & key management.
 Design the SAMs APDU command set complementing the COS

security.
 Design SAMs card mapping.
 Design the SAM-Application-Card APDU transaction flow for all

subsystems.
 Provide test cards and test SAMs to each subsystem vendor, so

that each subsystem vendor knows how to use the card and the
SAM.

26

Questions?

27

